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Abstract

Purpose — The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with
multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D),
rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity.
Design/methodology/approach — The second-order MRT model is implemented in a 3D LBM
code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-
1000) is investigated. The LBM simulation results are compared with those from numerical solution
of Navier-Stokes (NS) equations and with available experimental data.

Findings — The 3D simulations demonstrate that 2D models may predict the flow structure
reasonably well at low Reynolds numbers, but significant differences with experimental data appear
at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of
boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the
core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow,
the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase
in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to
cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary
flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low
Reynolds numbers, but become quite strong at high Reynolds numbers.

Originality/value — The findings will be useful in the study of variety of enclosed fluid flows.
Keywords Laminar flow, Flow, Modelling, Fluid dynamics

Paper type Research paper

1. Introduction

Viscous recirculating flow in a wall-bounded cavity, driven by steady, tangential, linear
translation of its lid is an excellent setup for studying many fundamental phenomena
of incompressible flows with or without heat transfer, such as corner vortices,
longitudinal vortices, Taylor-Gortler-like (TGL) vortices, transition and turbulence
(Shankar and Deshpande, 2000; Shuja et al., 2000; Das and Kanna, 2007; Wong 2007).
Furthermore, this type of flow is encountered in numerous practical applications, e.g.
short-dwell coaters and flexible coaters used for production of high-grade papers and
photographic films (Aidun et al, 1991), mixing of the fluids (Jana ef al, 1994) and in
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liquid-film drying devices (Alleborn et al., 1999). Scientific interest in this type of flow
began with the pioneering experimental works of Mills (1965) and Pan and Acrivos
(1967), who provided the visualization of three-dimensional (3D) cavity flow with
different aspect ratios (shown schematically in Figure 1). The classical problem of lid-
driven cavity (LDC) has been studied extensively both experimentally (Aidun et al.,
1991; Koseff and Street, 1984a, b, ¢) and numerically (Ghia ef al., 1982; Schreiber and
Keller, 1983; De Vahl Davis and Mallinson, 1976; Ku et al, 1987; Iwatsu et al., 1989;
Chiang et al., 1998). Owing to the simplicity of geometry, boundary conditions and
complicated vortical structure, it has emerged as a reliable benchmark problem for the
development of Navier-Stokes (NS) solvers (Babu and Korpela, 1994; Albensoeder and
Kuhlmann, 2005). Recently, Shankar and Deshpande (2000) have comprehensively
reviewed the LDC flow and identified crucial aspects open for investigations.

Many researchers (Ghia ef al., 1982; Schreiber and Keller, 1983) computed the steady
two-dimensional (2D) flow driven by a moving top wall in a square cavity for a range of
Reynolds numbers (the Reynolds number being defined as Re = Uj;qL/v, where Uyq 1s
the lid-velocity, L the cavity-width and v the kinematic viscosity of the fluid enclosed).
However, the 2D models provide only a first approximation since in experiments the
cavity is limited in span by end walls, with important 3D effects induced by the no-slip
conditions imposed thereon. Although, experimental measurements and visualizations
across a cross-section validate the 2D solutions qualitatively, a quantitative
comparison of velocity profiles fails. As pointed out in Koseff and Street (1984a), a
major disagreement is seen in the size of downstream secondary eddy as a function of
Reynolds number. The influence of 3D secondary circulation induced by the presence
of rigid end-walls in finite-length cavities has been investigated by many researchers
(Koseff and Street, 1984a, b, c¢; De Vahl Davis and Mallinson, 1976) Koseff and Street
(1984a, b, c¢) demonstrated the inherent three-dimensionality of the LDC flow with the
help of experiments using a square cross-section and various length-to-width aspect
ratios A = B/L (where B is the length of the cavity in spanwise direction), and with
different Reynolds numbers based on the cavity-width. TGL vortices and corner
vortices were observed apart from essential three-dimensionality and significant
transverse motion. The above studies reveal that at very low Reynolds numbers, LDC
flow remains almost 2D; it transforms to 3D flow with secondary vortices appearing in
the spanwise plane at moderate Reynolds numbers. The flow bifurcates from a
stationary one to a periodical one at a critical Reynolds number Re ~O(10°%), with the
onset of instability, which eventually leads to turbulence (Albensoeder et al, 2001).
However, the critical Reynolds number depends on length-to-width (4) and depth-to-
width (KX = H/L, where H is the depth of the cavity) aspect ratios. Transition to
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Figure 1.
A schematic showing the
different planes and lines
in a 3D lid-driven cavity




HFF
19,6

792

turbulence of LDC flow has been a major research topic since the pioneering work of
Koseff and Street (1984a) and continues to be pursued even today (Leriche and
Gavrilakis, 2000).

Experiments (Pan and Acrivos, 1967) and numerical simulations (Shen and Floryan,
1985; Gustafson and Halasi, 1985) on the 2D flow in a rectangular cavity have been
carried out to investigate the structure and evolution of the vortices for different depth-
to-width aspect ratios (K) and Reynolds numbers. Pan and Acrivos (1967) conducted
experimental and numerical simulation on rectangular cavities of different aspect
ratios K = 0.5-10 in order to study the flow structure when (Re, k) — oo. Shankar
(1993) analyzed the Stokes’ flow in a deep cavity and found that the primary vortex
structure is related to the corner eddies. Numerical investigations of the physics of LDC
flow in a deep cavity indicate the existence of critical aspect ratios at which the corner
eddies merge together and form another primary eddy. There have been very few
efforts (Albensoeder et al., 2001; Cortes and Miller, 1994) to understand the 3D flow in
deep cavities. Cortes and Miller (1994) made a comparative study of 3D and 2D cavity
flows. Their numerical results show that, at moderate Reynolds numbers, the
centerline velocity of a 3D cavity differs from that of a 2D cavity of the same aspect
ratio. However, there is no work available in the literature for 3D flows in cavities with
aspect ratio K > 2.

Lattice Boltzmann equation method (LBM), which is an alternative to solving NS
equations is used here to simulate the flow inside the 3D cavity. LBM is based on
microscopic Kkinetic equation for the particle distribution function. Unlike traditional
numerical methods which solve the NS equations to obtain the macroscopic variables
such as velocity and density, the LBM obtains these variables from the moment
integrations of the particle distribution function. As such, the LBM has computational
advantages, such as, simplicity of programming, intrinsic parallelism of the algorithm
and data structure. Several standard, benchmark problems have been pursued by LBM
and the results are shown to agree quite well with the corresponding NS solutions.
Currently, a number of other complex flow problems are being simulated using the
LBM approach (Huang et al., 2005, 2006). The real superiority of the lattice Botlzmann
method lies in the analysis of microscale flow and heat transfer problems. Recently,
LBM has been extended to the flow in a microchannel (Agrawal ef al., 2005), where
conventional solver fails. An introduction to the LBM theory, its methodology and the
current status may be obtained from Chen and Doolen (1998), Qian et al. (1992), Succi
(2001) and Yu et al (2003). The single-relaxation-time (SRT) model (also known as
Bhatnagar—Gross—Krook, or lattice BGK model) has been the most popularly employed
one, owing to its simplicity. However, certain other models which offer a superior
numerical stability than does the BGK model, have also been proposed. Among the
latter, the multiple-relaxation-time (MRT) model (d'Humieres, 1992; Lallemand and
Luo, 2000, 2003) and regularized LB (or RLB) model (Latt and Chopard, 2006) appear to
be noteworthy. Considering the rapid pace with which the subject is developing, in the
foreseeable future these alternative models (namely, MRT and RLB) are likely to play a
significant role in the numerical prediction of flows. 2D lid-driven square cavity flow
i1s a classical benchmark problem, with which SRT-LBM simulations have been
extensively validated (Guo et al., 2000, Chew et al., 2002). 2D LDC flows with different
aspect ratios (Cheng and Hung, 2006, Patil et al., 2006) have also been simulated using
SRT-LBM. Recently, diagonal-driven flow in 3D cavities has been studied using MRT-
LBM technique by d’'Humiéres et al. (2002) and it was found that MRT-LBM is superior



to SRT-LBM. This apart, there have been no efforts to investigate the vortex structure [.gminar flow 1n

in 3D LDC flows in rectangular cavities using LBM.

In this work, we present the MRT-LBM simulation of flow inside a 3D LDC with
different depth-to-width aspect ratios (K). The objectives of the present work are the
following: (1) to study the influence of the aspect ratio and Reynolds number on the
flow pattern in the 3D cavity, (2) to provide a comparison between present 3D results
with previous 2D results and (3) to assess the performance of MRT-LBM in simulating
internal 3D flows. For this purpose, the LBM approach is taken to model the 3D flow
inside the cavity and the results are compared with benchmarked numerical solutions
of NS equations. In this work, the currently practised MRT-LBM model has been
implemented on the D3Q19 lattice. A parallel MRT-LBM code has been developed for
numerical simulations.

The remainder of this article is organized as follows. In Section 2, the mathematical
formulation of the MRT approach is described. In Section 3, results from MRT-LBM
simulation of LDC flow in 3D cavity are presented and discussed. Finally, the major
conclusions are summarized in Section 4.

2. Mathematical formulation
In this section, the MRT-LBM formulation is briefly presented. The original and a
detailed description of the MRT methodology may be found in dHumieéres et al. (2002).

2.1 Non-dimensionalization

Subsequently, dimensional quantities are identified by a prime, and reference
quantities with the subscript “7ef”. In non-dimensional form, the individual quantities
are

/! / / ! /

"= Rear *Tar 'TAr VT aepar U A/

(1)

where Ax" = &/,,7/(N, — 1) is the lattice spacing, N, being the number of lattice nodes
placed within length «,,,and A¢’ the timestep. Furthermore, U'jq is the lid-velocity, u’
the velocity and ¢/ the kinematic viscosity of the fluid. For the present flow
configuration (see Figure 1), the cavity-width L’ is chosen as the characteristic
lengthscale ), Other physical variables are non-dimensionalized as follows:

P 7
P=—F fa: /a .
P ref P ref

(2)

In Equation (2), p = p(x, t) is the local mass density, and f,, = fle,, X, ) is the local,
instantaneous particle distribution function, which is a spatio-temporal function of
discretized microscopic velocity space e,. The Reynolds number characterizing this
flow is given by

_ U'igl! _ Uia(Ny — 1)

/
Vyer v

Re 3)

Where o, and 1/, are taken as density and kinematic viscosity of the fluid,
respectively.
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2.2 The lattice Boltzmann equation
The lattice Boltzmann equation, discretized in the velocity space but continuous in
physical space and time, may be written as

Of

8—; + e, - Vfa = F(M (4)
where I',, is the change in f,, due to inter-particle collisions. The discrete microscopic
velocity is represented as

{ea|a=0,...,(b—1)} %)

where e, = 0 refers to “resting” particles. With the discrete velocity set given, a set of
b real numbers on each physical point x and at a time ¢,

{falx,t) |a=0,...,(b—1)} (6)

is used to represent the particle distribution function at (x, #) and discretized in velocity
space. To obtain a numerical solution to Equation (4), two further discretizations are
involved: those in the physical space and time. Suppose one considers a general case,
where the time-evolution of Equation (4) is studied at each discrete physical location x;
on a discrete lattice space based on the set of b discrete velocities of Equation (5)
according to a set of rules that enforces the local conservation laws. Then the fully
discretized particle distribution function may be represented in a vector space R’ using
the notation used in Lallemand and Luo (2000) as

Vo (%5, 1)) = Lo (%, 1) f1 (X5 ) - Fiony (%5, 1)} (7)

Here, f.,’s are the distribution function of velocity e, at (x;, £,,).
The local and instantaneous macroscopic flow properties are related to the moments
of the particle distribution functions in the following manner:

b—1 b—1

p(Xjt) =Y falXpts)  and (x5 6) = pu(x;t) = Y eafu(Xjt:)  (8)

a=0 a=0

2.3 The MRT-LBM method
Given a chosen set of discrete velocities and corresponding distribution functions in
the phase space F = R?, an equal number of moments

|Wla(Xj, tﬂ)> = {mo(va tn)a ny (X]v tﬂ)a v am(bfl) (Xja ti”t)}Tv (9)

may be defined in the moment space M = R” of the distribution functions . The
mapping is linear and invertible, and is defined by

|ma> = lea>7 lfa> = M71|ma>7 (10)

where M is the linear transformation matrix. For a chosen velocity set {e,} (which is
determined by the lattice-geometry), the transformation matrix M can be constructed



by applying the Gram-Schmidt orthogonalization procedure to monomials (¢? . ¢?

¢¢ ) of cartesian components of the discrete velocities in 3D (Lallemand and LuOGZTOO%{
The evolution equation (4) of the MRT-LBM can be written in discretized form as

o3+ €t + 1) = Va5, 82)) = M8 [l (31, 8)) — b (x5, 80} |- (11)

In Equation (11), the collision matrix S =MSM™ is diagonal, whose elements
Soa = {80,51,...,5_1} are the rates with which each element of |m, ) relaxes towards
the respective equilibrium value |mff Q)). The numerical values of relaxation rates {s, }
are determined by a linear analysis to obtain an optimal numerical stability (Lallemand
and Luo, 2000). The b moments can be divided into two groups: hydrodynamic
(conserved) moments and the Kkinetic (non-conserved) moments. Hydrodynamic
moments are conserved locally during the collision process, so that mffq> = My,
Whereas the kinetic moments are not conserved during the collision process so that

£ m,, (Humiéres et al., 2002). For models designed to simulate athermal fluids,
mass density (p), momentum (j) are the only hydrodynamic moments On the other
hand, equilibrium values of kinetic moments are functions of p and [j|? for scalars, and
j times certain functions of p and |j|* for vectors, and so on.

It may be noted that the SRT-LBM model is a special case of its MRT-LBM
counterpart; by choosing a special set of parameter values in the equilibria of the
moments 7 ¥, and a single relaxation rate s, = 71, the MRT-LBM model reduces to
the SRT-LBM model. In the MRT framework, all modes (i.e. moments) are orthogonal
and their relaxation rates can be controlled individually. This allows the MRT model to
include the maximum number of adjustable parameters, and hence achieve superiority
over the SRT-LBM.

2.4 The D3Q19 lattice
A schematic of the D3Q19 lattice (d’Humieres ef al, 2002) is shown in Figure 2. For this
lattice, the discrete velocity set is

(07050)a a=0
e, =< (£1,0,0), (0,£1,0), (0,0,+1), a=12....6  (12)
(£1,£1,0), (£1,0,+1), (0,41,£1), a=78,...,18
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model for MRT
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In the present work, the transformation matrix M, corresponding moments 7, their
equilibrium values 7%, and the collision matrix S, are taken exactly as suggested by

d’Humieres ef al. (2002).

2.5 Boundary and initial conditions
Following the literature (Shankar and Deshpande, 2000) for the cubic cavity problem,
Dirichlet boundary conditions are imposed on the walls:

Left and right walls: u=v=w=0 atx = (0,N,)

Front and rear walls: #=v=w=0 atz= (0,N,)

Bottom wall: u=v=w=0 aty=0

Top wall: u="Uyq, v=w=0 aty=N,

(13)

For laminar flow regimes (far from instability or transition to turbulence), we may
expect the flow-field to be symmetric about the center plane CP (Iwatsu et al. (1989)
reported that the flow remains symmetric until very high Reynolds numbers,
Re < 3,000). Taking advantage of this feature, symmetry conditions are imposed at
z = N,/2, and only one-half of the cavity (0 < z < N,/2) is taken as the computational
domain. The corresponding symmetry conditions are

%0 on (v N.s2) (14)
0z

(a few runs including the full domain revealed that the results remain identical to those
with symmetry conditions). These physical boundary conditions may be implemented
within the LBM code in different ways. The actual method of implementation in the
present code is discussed briefly in the following subsections.

2.5.1 Stationary-wall conditions. In earlier attempts for 3D LDC flow simulation
d’Humieres et al (2002) used “bounce-back” condition on all the stationary walls. It was
found that the bounce-back condition is only first order accurate (Ziegler, 1993;
Ginzbourg and Adler, 1994). This degrades the LBM, since numerical accuracy of
Equation (11) for the interior mesh points is second order. On the five stationary walls
the “link-bounce-back” condition is applied which has been claimed to be second-order
accurate (Ziegler, 1993). He et al (1997) confirmed this result by analyzing the slip
velocity near the wall node for Poiseuille flow. For the implementation of the boundary
condition, herein the mesh points nearest to the wall are placed at a distance equal to
one-half of the mesh size from the wall.

2.5.2 Moving-wall conditions. For the moving lid, we have used the link-bounce-back
condition in a slightly modified form as proposed by Bouzidi ef al (2001). This boundary
condition is obtained in the velocity space by assigning particle distributions to

eéz'Ui ea'Ui
fa = fa + 2w0po =50 = fo = Zapo = (15)

where wy = 1/3, w, = 1/18 for  €{1, ..., 6} and w, = 1/36 for a« €{ 7, ..., 18}. py is
the initial density and f; represents distribution function of e; = —e,,. In the present
method, the boundary condition (Equation (13)) is implemented such that the particle
distribution that is being streamed to the moving lid is reflected back to its original
position with an addition of momentum due to the moving lid.



2.5.3 Symmetry conditions. On the plane CP (x, y, N,/2), flow-symmetry is imposed
as described in Lu et al. (2002).

2.5.4 Initial conditions. At the time of starting the simulations (¢ = 0), the fluid-
velocities at all the nodes u(x, 0) are initialized to zero. The initial density p(x, 0) is set
to a value of 1.0 (d'Humieéres et al., 2002). The initial equilibrium distribution function
Fed(x, 0) is then evaluated corresponding to these conditions. The initial distribution
function is taken as the corresponding equilibrium values, £,,(x, 0) = £°9(x, 0).

2.6 Numerical code

The MRT-LBM equation (11) is solved on a uniform 3D mesh along with boundary and
initial conditions described in the previous section. Each numerical timestep consists of
three different steps:

@
2
®)

as is usually followed in the LBM approach. Computations were carried out with a
parallel code, originally developed by the authors using MPI technique and written in
the C++ programming language. The code has been tested to run on both a PC-cluster
as well as on a IBM-Regatta parallel computing system.

Shown in Figure 3 is the variation of the CPU time required (per lattice node per timestep)
by the PC-cluster as a function of the number of processors employed. It may be seen from
this figure that the CPU time decreases almost linearly with increase in the number of
processors. This further indicates that the time spent in data-transfer between the processors
1s negligible compared to the time taken for computing, over the range of problem-size
and number of processors employed in these studies. This demonstrates an efficient
parallelization of the code, as well as the suitability of LBM technique for parallel computing.

collision;
streaming; and

boundary condition steps

3. Results and discussion

In this section, we discuss the numerical grids used for the different simulations, grid
independence study, validation of the present numerical code, the results obtained for
3D rectangular cavities with various aspect ratios and Reynolds numbers.
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Figure 3.

Variation of the
computing time taken per
timestep per lattice node
as a function of total
number of processors
employed
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Table 1.

Typical number of
lattice points used in the
present 3D LDC
simulations (A = 1)

3.1 Grid systems, convergence and grid-independence study

LBM belongs to a class of solvers analogous to the pseudo-compressible solvers
employed for incompressible NS equations. In order to correctly simulate
incompressible flow one has to ensure that Mach number, Ma = Ujg/cs < 1. In
the present simulations, Ma < 0.15 is chosen, and hence, ¢, being a constant (=1), the
velocity Uj;q must be small enough. A lid-velocity of Uy;,q = 0.1 is prescribed in all the
simulations. Therefore, to simulate flows of high Reynolds numbers (see Equation (3)),
one has to employ a large number of lattice nodes, where the dimensionless viscosity v
is sufficiently large but lies within the numerical stability limit (in the LBGK setting,
v < 0.5).

Table I presents the typical number of lattice points used in the present simulations.
The number of lattice points (V,, N,, IV;) used in each direction vary with the aspect
ratio (K) and the Reynolds number. In these simulations, the aspect ratio A = 1 is
chosen. The simulations were considered to have reached a steady-state when the
difference in the local velocity values (1,000 timesteps apart) reduces to less than 1 per
cent of the local velocity over the entire flow-field.

Presented in Table II is the grid independence of the results established for the
present 3D LDC simulations at Re = 1,000 and K = 1. Here, the results obtained on
two different grids are summarized in terms of the minimum of the x-directional
velocity component along the line CL. It is observed that the results obtained with the
two grid-systems differ within about 0.5 per cent, and hence may be accepted as grid-
independent. However, it is to be noted that the computational requirement becomes
prohibitively huge for higher aspect ratios (e.g. K = 4), if one intends to use the same
number of grid points comparable to corresponding 2D simulations. Therefore, our
simulations for K = 4 are restricted to a grid resolution of (129 x 513 x 129), which
was the practical limit imposed by the available computing resources. This is not
claimed to be grid-independent, but the computed vorticity magnitudes were within 5-6
per cent from the corresponding results with (97 x 513 x 97) lattice nodes.

K=0.25 K=05 K=1 K=2 K=4
Re N, N, N N, N, NN NN N, NN N, N, NN N, N, N

0.01 97 25 97 73 37 73 33 33 33 33 65 33 33 129 33
100 97 25 97 73 37 73 33 33 33 33 65 33 33 129 33
400 145 37 145 97 49 97 65 65 65 65 129 65 65 257 65
1,000 193 49 193 129 65 129 97 97 97 97 193 97 129 513 129

Table II.
Grid-dependence study
for K=A =1,

Re = 1,000)

Mesh
97 x 97 x 97) (129 x 129 x 129) % change
Umin —0.282536004 —0.282606638 0.025
Ymin 0.132654061 0.132640796 0.010

Note: Here u,,;, indicates the minimum velocity in the x direction along the line CL, and vy,
represents the location where u,,;, occurs




3.2 Validation of numerical code

In this subsection, first we present a comparison of the steady-state velocity profile obtained
from the present MRT-LBM simulations with the NS solutions published in the literature.
These cases correspond to a lid-driven flow in a cubic cavity (A = K = 1) aswellasin a
rectangular cavity A = 1, K = 2and A = 2, K = 1) at different Reynolds numbers.

Shown in Figure 4 are the normalized x- and y-components of velocity profiles along
the vertical (CL) and horizontal (ML) centerline at the plane CP, respectively (these
correspond to, CL: (NV,/2, y, N,/2), ML: (x, N,/2, N,/2) and CP: (x, y, N./2), see Figure 1).
Solid lines represent the results obtained from the present simulations, whereas the
discrete points denote the 3D pseudo-spectral solution of NS equations by Albensoeder
and Kuhlmann (2005). It is seen that the comparison is excellent at all Reynolds
numbers considered here.

Shown in Figure 5 are the normalized x-components of velocity profiles along the
vertical (CL) centerline at the plane CP for a cavity of aspect ratio K = 2. Solid lines
represent the results obtained in the present simulations, whereas the discrete points
denote the 3D NS results by Albensoeder and Kuhlmann (2005). It is seen that the
present MRT-LBM simulations agree well with the NS results of Albensoeder and
Kuhlmann (2005) at all Reynolds numbers for the deep cavity also. A further validation
was attempted by carrying out the flow simulation using a well-established,
commercial CFD package, ANSYS-CFX. This employs a second-order accurate,
combined finite difference/finite volume technique for solution of NS equations. The
number of grid-points employed in the ANSYS-CFX simulations were identical to that
used in our LBM simulations. The results from ANSYS-CFX also compare excellently
with the present MRT-LBM results at Re = 1,000.

The LBM-technique is claimed to offer a second-order accuracy in time. This aspect
was examined by a comparison of the time-evolution of velocities against the
predictions by the NS computations (Albensoeder and Kuhlmann, 2005). Shown in
Figure 6 is such a comparison of the time-evolution of »-velocities at two physical
locations namely, (0.90908, 0.5, 1) and (0.22223, 0.5, 1). The initial flow-field was taken
as zero-velocities at all locations, which is also the case with the computations by
Albensoeder and Kuhlmann (2005). In the present simulations, (97 x 97 x 193) lattice
nodes were employed whereas Albensoeder and Kuhlmann (2005) employed
(32 x 32 x 32) grids. The present LBM predictions closely agree with the NS solution

(a) (b) o5
© Re=100
il = & Re=400
?; 2> 0.25 o Re=1000
>
8 z 0
5 g ;
o} o Re=100 | )
[a o Re=a00 | > 025 §
. © Re=1000 .
0 0 -0.5
-0.5 0 0.5 1 0 02505075 1
Velocity uMIi . Distance xf’l\lK

Notes: Plots of (a) u(0.5, y, 0.5), and (b) v(x, 0.5, 0.5). Lines:
present LBM results, symbols: results from Albensoeder and
Kuhlmann (2005) for Re = 100, 400, and 1,000 (K = A =1
for all cases)
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Figure 5.

Comparison of velocity

profiles on the CP-plane
for a cavity of (K = 2,

A =1). Plots of

u(0.5, ¥, 0.5)

Figure 6.
Time-evolution of
velocities for the case
K=1A=2
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results. Hence it is concluded that the LBM method offers a technique for accurate
simulation of time-dependent flow problems also.

3.3 Results for the 3D rectangular cavity

In this subsection, results of both shallow (X < 1) and deep (K > 1) cavity simulations
are presented along with those of cubic (K = 1) cavity. In all the cases, a spanwise
aspect ratio of A = 1 is chosen. Figure 7 represents the steady-state velocity profile
along line CL for different aspect ratios (X = 0.25, 0.5, 2,4) and Reynolds numbers
(Re = 0.01, 100, 400, 1,000). It may be observed that for shallow cavities (Figures 7(a)
and (b)) the region close to the bottom wall shows a significant boundary layer,
whereas for high aspect ratios, it is absent. Furthermore, from Figure 7(a) it is seen that
a flow-reversal occurs near the bottom wall, as the Reynolds number is increased from
100 to 400. Subsequently, we shall return to a discussion on this aspect.

Cheng and Hung (2006) presented the drag coefficient on the lid for a 2D rectangular
cavity flow for different sets of (K < 1, Re). They reported that the drag coefficient
decreases significantly as either K or Re increases. In order to assess the difference
between 2D and 3D results, we calculated the average drag coefficient from the present
simulations. Here the drag coefficient is defined as

2r

=— 16

where F'is the net drag force on the lid, which in turn is defined as

(@) 0.255— (d) 4
= |
-05 0 05 1
350
b
(b) 05 sl
0.25
0
-0.5 1 25
(@0 2 2t
15 150
1 1r
0.5 0.5f

—%‘5 0 0.5 1 —%.5 0 0.5 1

Notes: Following notations are used for Reynolds number:
“a” for Re = 100, “b” for Re = 400.,and, “c” for Re = 1,000
(A = 1 for all cases)
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Figure 7.

Plots of x-component of
velocity (#) along CL with
different aspect ratios,
K= (a)0.25, (b) 0.5, (c) 2.0,
and, (d) 4.0 at different Re
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Table III.

The average drag
coefficients (Cy on the
moving wall at different
aspect ratios (K) and
Reynolds numbers Re
(for all cases, A=1)

F:Ju %‘ ds, (17)

the integration being carried out over the entire wetted area of the lid. In order to
compare the present 3D and reported 2D results, we have also calculated the drag
coefficient along the line z = N,/2 on the lid-surface. Shown in Table III are the
drag coefficients for shallow and cubic cavities at different Reynolds numbers. It is
observed that the drag coefficient calculated from 2D simulations deviates the
maximum (33 per cent) for shallow cavity (K = 0.25, Re = 100) from an equivalent 3D
simulation. This deviation decreases as the aspect ratio is increased up to X = 1.

The drag coefficient was also calculated for cavities of aspect ratio greater than 1. It
was observed that beyond K = 1, the calculated C;values did not change much with the
aspect ratio (K = 2 or 4) for a particular Reynolds number (not included in Table III).

The 3D flow structure in the plane CP (see Figure 1) was investigated for various
aspect ratios and Reynolds numbers. In the following discussions, we first present the
results of shallow cavities, and subsequently, of the cubic and deep cavities.

3.3.1 Shallow cavities (K < 1). Figure 8 shows the velocity vectors and vorticity
contours for the shallow cavity (K = 0.25) flow at different Reynolds numbers,
(Re = 0.01, 100, 400, 1000). The effect of Reynolds number on the vortex structure in
the cavity is clearly seen. In the limit of creeping flow (Re = 0.01), the flow structure is
characterized by a single, large, primary eddy (Figure 8(a)); secondary eddies at the
bottom corners were not prominently observed. The vorticity contours are quite
symmetric about the vertical centerline (CL). The center of the primary eddy is located
at the middle the cavity, but slightly towards the moving lid.

As Re is increased from 0.01 to Re = 1,000, the center of the primary eddy is found
to shift towards the downstream sidewall of the cavity, and the flow pattern no longer
remains symmetric about the vertical centerline due to the increasing domination of
inertia force. A similar trend has been reported from 2D simulations also (Cheng and
Hung, 2006). The velocity vectors and vorticity contour-plots reveal that the strength of
the primary vortex decreases with increasing Re (Figure 8).

At Re = 1,000 (Figure 8(d)), a second primary vortex appears adjacent to the first
primary vortex. The second primary vortex is found to have an opposite direction
(counter-clockwise here), and a lower strength compared to the first primary vortex.

K Re = 0.01 Re =100 Re = 400 Re = 1,000
0.25% 5,390 0.5293 0.1986 0.1112
0.25" 4,975 0.5089 0.1914 0.0983
0.25° 3,346 0.3369 - 0.04298
0.50* 3,755 0.4036 0.1436 0.0743
0.50° 3,388 0.3801 0.1389 0.0668
0.50° 2,845 0.2926 - 0.0424
1.00* 2,839 0.2724 0.1074 0.0603
1.00° 2,621 0.2586 0.1034 0.0586
1.00° 2,764 0.2874 - 0.04201

Notes: “Present results, average drag coefficient calculated over entire lid surface; Ppresent
results, average drag coefficient calculated at z = 0.5 on lid surface; “2D results reported by Cheng
and Hung (2006)




0 0.5 1

Notes: Aspect ratios K = 0.25, A = 1; the abscissa and ordinate correspond to
distances x/N,, ¥/N, across the plane CP. Reynolds numbers correspond to: (a)
0.01, (b) 100, (c) 400, and (d) 1,000, respectively. Velocity components are in
the plane of the paper (CP) whereas vorticity component is normal to the
paper; other components are not shown

Furthermore, the size of second primary vortex is smaller than the first primary
vortex. This implies that as the Reynolds number is increased, the flow structure
within the cavity becomes increasingly more complex.

The velocity vectors and vorticity contours at K = 0.5 are shown in Figure 9. The
vortex structure remains almost similar when Re < 100. When Re > 100, however, the
size of the upstream bottom corner vortex increases remarkably with increasing Re
while the primary vortex starts shrinking in size (Figures 9(b)-(d)). Another important
difference from K = 0.25 case is that the primary vortex becomes more circular when
K = 0.5. This trend continues as the aspect ratio increases.

3.3.2 Cubic cavity (A = K = 1). Shown in Figure 10 are the velocity vectors and
vorticity contours for a cubic cavity (A = K = 1). At low Reynolds numbers, Figures
10(a) and (b), the region occupied by the primary vortex is relatively small, due to the
highly diffusive transport of the vorticity, and the boundary layers near the walls are
considerably thick. On the other hand, at high Reynolds numbers, Figures 10(c) and (d),
the primary vortex grows in size and occupies most of the central region of the cavity
cross-section; the boundary layer is seen to be limited to very thin regions near the
walls. In this case, the vorticity transport is dominated by the advection created due to
motion of the top lid.

Furthermore, a pair of small, secondary vortices appear near the bottom corners of
the cavity. These secondary vortices are not evident in Figures 10(a) and (d), because of
the relatively small magnitude of the velocities in these regions compared to that in the
central region of the cavity. However, a plot of streamlines (not shown here) revealed
such secondary vortices at all Reynolds numbers. These secondary eddies have been
well characterized by previous 2D simulations (see e.g. Ghia ef al,, 1982; Patil, ef al.,
2006). For instance, Ghia et al (1982) calculated the vorticity at the center of the
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Figure 8.

Velocity vector (top row)
and vorticity contour
(bottom row) plot
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Figure 9.

Velocity vector (top row)
and vorticity contour
(bottom row) plot
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Notes: Aspect ratios K = 0.5, A = 1 The abscissa and ordinate are same as in
Figure8. Reynolds numbers correspond to: (a) 0.01, (b) 100, (c) 400 and (d) 1,000,
respectively. Velocity and vorticity components same as in Figure 8

downstream secondary eddy as €, = 0.4335 for a square cavity at Re = 400. Our
present simulations yield a value of 2, = 0.3545.

As Re is increased, the center of the primary vortex (x., v, shifts towards the
downstream wall, and simultaneously it moves down towards the bottom wall of the
cavity (see Figures 10(a)-(d)). In 2D simulations, the center of the primary vortex has
been observed to shift towards the downstream side of the cavity until the Reynolds
number increases to about 100, but there onwards it asymptotically moves towards the
geometric center of the cavity (Ghia et al, 1982) with further increase in Reynolds
number. The variation of (x,., y.) with Re has been the most widely investigated
characteristic of the lid-driven cavity flow in 2D simulations. Therefore, we have also
examined this aspect in our study. Shown in Figure 11 is the computed location of the
primary eddy at different Reynolds numbers, which clearly shows the movement of
location (x,, y.) with Re. Also shown are the results from NS simulations using 2D (Ghia
et al., 1982; Cheng and Hung, 2006) and 3D (Iwatsu ef al., 1989) flow models. Shankar
(1993) obtained the theoretical result in the 2D creeping flow limit (Re — 0), as
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(x, = 05,9, = 0.76). It may be observed from Figure 11 that the results of 2D- and 3D-
simulations agree very well for Re = 0.01 and Re = 100. However, for Re = 400 and
Re = 1,000, the predicted locations (x, y.) from 2D and 3D flow models are
significantly different. We believe that this difference is because of an enhanced motion
in the transverse direction.
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Shown in Table IV are the present results of (x,, y.) and the vorticity at that location,
Q. for different Reynolds numbers. In order to make a quantitative comparison, the
results reported by previous workers using 2D (Ghia ef al., 1982; Cheng and Hung, 2006)
and 3D (Iwatsu et al.,, 1989) NS simulations, as well as 3D NS simulations using ANSYS-
CFX are also included here. It may be noted that the present MRT-LBM predicts a
comparable value of €, for the low Reynolds number case (Re = 0.01), whereas it
predicts a much lower €, for higher Reynolds number cases (Re > 100). This may be
attributed to the presence of boundary layers near the transverse side-walls.

A further comparison of results from 3D flow-model against those from 2D flow-
model is shown in Figure 12. Here, the #, v-velocity profiles along the lines (NV,/2, y, N./2)
and (v, N,/2, N./2), respectively are plotted, at two Reynolds numbers. Very close to the
walls, the velocity profiles predicted by the two models are almost identical. Further, it
may be observed that at Re = 100, the velocity profiles deviate a little whereas at higher
value, namely, Re = 1,000, the velocity profiles predicted by 3D computations are
significantly different in comparison to those of 2D computations. This could be
attributed to the development of a strong secondary flow (particularly at regions away
from the walls) at high Reynolds numbers. We shall subsequently return to this issue.

Shown in Table V, are the horizontal (xp) and vertical (vp) distances which
characterize the size of the downstream-secondary eddy. Included in this table are the
results of numerical simulations (2D by Ghia ef al.,, 1982 and 3D by Iwatsu et al., 1989)
and experimental measurements (A = 1 by Pan and Acrivos, 1967) and A = 3 by
Koseff and Street, 1984a). To compare the results reported by Pan and Acrivos (1967),
the flow in a cubic cavity (K = 1) has been studied at Re = 500 (the results are shown
in Table V). The 3D simulations (both Iwatsu ef al. (1989) and the present) are seen to
predict yp, closer to the experimental data than the corresponding 2D simulations.
However, the minor difference with the results at Re = 1,000 reported by Koseff and
Street (1984a) may be attributed to the weakened 3D effects as they have used a
spanwise wider cavity.

3.3.3 Deep cavities (K > 1). Shown in Figures 13 and 14 are the velocity vectors and
vorticity contours for cavities with K = 2 and K = 4, respectively.

It is noticed that a series of counter-rotating primary vortices, of successively
weaker vorticity magnitudes, are formed below the moving lid. For the case of K = 2,
two such primary vortices and for K = 4, three primary vortices are observed. It is
seen from the velocity vector plots that, as the Reynolds number increases, the center of
the first primary vortex moves downwards with respect to the top lid. This feature has
been reported in the case of flow in 2D deep cavities also (Patil et al.,, 2006). It is further
observed from Figures 13(a) and (b), that the velocity near the bottom wall region
reduces to very small values. For a given cavity depth K > 1, there exists a critical
Reynolds number below which the regions close to the bottom wall may be
approximated by the limiting case of creeping flow. In such cases, the flow structure
near the bottom wall is symmetric about the line CL (Pan and Acrivos, 1967; Patil ef al.,
2006). Above this critical Reynolds number, the flow near the bottom wall loses
symmetry about the line CL. This is seen from the results shown in Figures 13(c) and
(d). However, when the aspect ratio is increased, the flow symmetry near the bottom
wall region is regained, as may be seen from Figures 14(c) and (d). Therefore, for an
infinitely deep cavity with very high Reynolds number limiting case of creeping flow
may be approached near the bottom wall of the cavity. Since the flow velocity becomes
very small near the bottom wall region, the velocity vector plots in Figures 13 and 14
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Figure 12.
Comparison of velocity
profiles as predicted by
3D flow model against
those by 2D flow model

Table V.

Comparison for vertical
and horizontal extent of
the downstream-eddy
size with 2D numerical
and experimental results
for a cubic cavity at

Re = 400, 500 and 1,000

are not able to reveal this feature. However the vorticity plots in Figures 13 and 14
exhibit a symmetry near the bottom wall.

In Table VI, we have summarized the results of simulations for aspect ratios K > 1
and Reynolds numbers. Shown here are the location and vorticity at the center of the
primary vortices. It may be seen, for the deep cavity flow, the sizes and center position
of the large vortices near the top lid appear to be strongly affected by Re, but is not so
much by the cavity-aspect ratio. Furthermore, for K = 4 and all Reynolds numbers,
the center of the third primary eddy approaches the mid-plane (x,.~ 0.5) which is the
result for creeping flow limit. The vertical distance between two successive primary
eddies is found to be 1.646 (between first and second) and 1.63 (between second and
third) for Re = 0.01. In comparison, the 2D theoretical solution (Shankar and
Deshpande, 2000) for the limiting case of infinitely deep cavity and Stokes flow
(K — oo, Re — 0) is 1.396. An examination of the data from 2D simulations provided in
Cheng and Hung (2006) corroborates this. Hence, we may conclude that the 3D
simulations lead to a result wherein the adjacent primary eddies are slightly placed
farther apart (about 17 per cent) in the vertical direction, in comparison to the 2D
results.

3.3.4 Secondary Flow. The structure of the secondary flow for different aspect ratios
and Reynolds numbers is presented in this section. Shown in Figures 15 and 16 are the
velocity vectors in the perpendicular plane (PP) for K = 0.5and K = 1, respectively.

It 1s seen at low Reynolds number that the flow in shallow cavities remains almost
parallel to the cavity side-walls. At Re = 400, a pair of corner vortices are formed
adjacent to the top wall of the cavity (Figure 15(a)). Flow-streamlines at the plane PP no
longer remain parallel. At Re = 1,000, the flow-field becomes very complex, with a pair
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Notes: Solid lines: from present work; dashed lines: from Ghia et al. (1982)

Re = 400 Re = 500 Re = 1,000
XD YD XD Yp XD Yp
Ghia et al (1982) 0.2617 0.3203 - - 0.3034 0.3536
Iwatsu et al. (1989) 0.2604 0.2817 - 0.2623 0.2765
Pan and Acrivos (1967) - - - 0.350 - 0.280
Koseff and Street (1984a) - - - - - 0.316
Present 0.258 0.278 0.258 0.278 0.262 0.282

Notes: (xp,yp) are the vertical and horizontal extent, respectively, of the downstream-secondary
eddy at the symmetry-plane z= 0.5 (for all cases, A =1)
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Notes: Aspectratios A = 1, K = 2; the abscissa and ordinate are same as in Figure 8.Reynolds

numbers correspond to: (a) 0.01, (b) 100, (c) 400 and (d) 1,000, respectively. Velocity and
vorticity components are the same as in Figure 8

of secondary-flow vortices appearing near the geometric center of the cavity (Figure
15(b)). For K = 1, we observe a distinct change in the structure of the flow-field. In the
plane PP, a pair of secondary-flow vortices (Figure 16(a)) are found at small Reynolds
number (around 0.01-100), that gradually shift towards the lower corner of the cavity
side-walls with increasing Reynolds numbers (Figure 16(b) and (c)). Also, two pairs of
longitudinal vortices begin to appear at the upper corner of the side-walls (in fact, a
closer examination revealed the presence of a few other weak vortices, thus making the
flow-field quite complex). These secondary vortices gain in strength with increase in
Reynolds numbers (Figures 16(c)). For instance, at Re = 100, the vorticity component
in the direction of lid-motion is found to have a magnitude of €, = 0.3511 for the
secondary vortex, while the vorticity component €, = 29213 at the center of the
primary vortex (see Table IV). However, at Re = 1,000, these components are found to
be Q, = 2.6341 and €2, = 0.6811, respectively. For deep cavities, secondary flow was
found to be insignificant near the bottom wall.

Summarized in Table VII are the results obtained with respect to the secondary
vortex on the plane PP (x = N,/2) at different Reynolds numbers for K = A =1
cavity. Listed are the predicted values of the x-component of the most prominent
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Figure 13.

Plots of velocity vector
(top row) and vorticity
contour (bottom row)
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First Second Third Laminar flow in

K  Re (%, 3¢) Q (%e,9c) Q (%e,3c)

Q a 3D lid-driven

1 001 (05,022 33743 - - -
100 (0614, 0.244) 29213 - -
400 (0618, 0.428)  1.4043 - - -
1,000 (0591, 0.543)  0.6811 - -

2 001 05,022 33472 (05,1816  —0.00184 -
100 (0614, 0.245) 28428 (062, 156)  —0.01056 -
400 (0622, 0442) 14427 (0462, 1313)  —0.2985 -
1,000 (0.608,0.641) 07992 (0.357, 1412)  —0.4346 -

4 001  (050224) 33432 (0.5 1.87) ~0.0022 (0.5, 3.5)
100 (0614, 0.245) 28373  (0573,1595)  —0.0096  (0.496, 3.253)
400 (0622, 0.442) 14408 (0458, 1.318)  —0.2046 (0492, 2.916)
1,000 (0610, 0.645) 08134 (0394, 1.349)  —04550  (0.484, 3.623)

j cavity
_ 811
1164 x 1078 Table VI.
4440 x 107®  Location of the center of
2128 x 107* the first, second and

1678 x 107 third primary vortex, at
different aspect ratios

Notes: Here y, is the distance from the moving lid and €2, is the z-component of vorticity at (K) and Reynolds
(%, 5¢,0.5) (for all cases, A = 1) numbers
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a Plots of velocity vector on
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Distance szZ

Note: The velocity components are in the plane of the paper (PP)

Reynolds numbers
(@) Re = 400 and
(b) Re = 1,000

secondary vortex, and the location of its center on the plane PP. It may be observed
from Table VII that the secondary vortex becomes stronger and shifts downwards with
increase in the Reynolds number. It was also observed that the strength of the primary
vortex decreases with an increase in Reynolds numbers (see Table VII). Therefore, it
may be concluded that the three-dimensionality of the flow induces a transfer of motion
from the principal direction (namely, x) to the transverse direction, with increase in the
Reynolds number. Plane 2D-simulations are unable to capture such a character of real
flows. This feature could be related to the phenomenon of vortex stretching, which
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Figure 16.

Plots of velocity vector on
the plane PP for aspect
ratios A =1, K =1 at
Reynolds numbers

(@) Re = 0.01, (b)

Re = 400 and (c)

Re = 1,000

Table VII.

Location and strength
of the most prominent
secondary vortex, at
different Reynolds
numbers (K = A = 1)

leads to an intensification of local vorticity in 3D flows, but is absent in 2D flows
(Batchelor, 1967).

4. Conclusions

In this paper, the lid-driven flow in 3D rectangular cavities has been investigated
using MRT-LBM. The present numerical simulations not only validate the flow
characteristics reported by previous researchers for lid-driven 3D flows in a cubic
cavity (K = 1) with different Reynolds numbers, but also extend the results to flows in
cavities with different aspect ratios.

Based on the investigations conducted for different sets of (K, Re), the following
conclusions can be made. When K < 1, the vortex structure in the cavity changes
considerably with Re. For Re < 100, the flow structure inside the cavity is characterized
by a large vortex filling almost the whole cavity. As Re increases, a second primary
vortex appears beside the first primary vortex and the flow in the cavity becomes more
complex. The major feature of the flow in a 3D deep cavity (K > 1) is that the entire
cavity is filled with a series of counter-rotating primary vortices placed vertically along
the cavity-height. The size, center position, vorticity and the number of vortices
depends on both the Reynolds number and the cavity aspect ratio. It is further
observed that the inertia force near the cavity-bottom decreases with increasing depth-
to-width aspect ratio, and beyond a critical value of this ratio, flow characteristics there
approach the theoretical limit of creeping flow.

The present simulations demonstrate that 2D models may predict the flow structure
reasonably well at low Reynolds numbers, but significant differences appear at high
Reynolds numbers. This discrepancy between 2D- and 3D-results are attributed to the
effect of boundary layers near the side-walls in transverse direction (in 3D), due to

Distance y/N

0.5
Distance z,fNZ Distance szz Distance szz

Note: The velocity components are in the plane of the paper (PP)

Re (yuzc) Qe

100 (0.62266, 0.68997) —0.3511
400 (0.77857, 0.81394) —1.2415
1,000 (0.85231. 0.87725) 26341

Notes: Here y, is the distance from the moving lid and €, is the x-component of vorticity at
(0-57yc7zc)




which the vorticity in the core-region is weakened in general. Also, owing to the vortex [ .aminar flow in

stretching effect present in 3D flow, the vorticity in the transverse plane intensifies
whereas that in the lateral plane decays, with increase in Reynolds number. For high
Reynolds numbers, strong secondary flow vortices whose axis is in the direction of the
lid-motion are observed. Complex flow problems, such as, transition to turbulence, and
turbulent flow in the cavities of different aspect ratios may be of interest for future
studies.
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